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ABSTRACT:

Tests based on adjusted or modified spacings are proposed for testing
goodness of fit problems. 'The weak convergence of the empirical distribution
function of such modified spacings iq studied using some earlier results of
the authors. The asymptotic theory under close alternative sequences is also
given thus enabiing one to calculate the asymptotic relative efficiencies

of such tests.
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Asmprorric NORMALITY AND EFFICIENCIES OF TESTS BASED ON MODIFIED SPACINGS
J.S. Rao, University of California, Santa Barbara

and
J. Sethuraman, Florida State University, Tallahassee.

l. Introduction and Summary.

Let X;,X5,...,X , be (n-1) independently and identicglly dis-
tributed random variables with a common distribution function (d.f.)
G(x). The goodness-of-fit problem is to test whether G(x) is a
specified d.f. . When the latter d.f. is continuous, a simple prob-
ability transformation on the random variables would permit us to
equate the pre-assigned d.f. to the uniform d.f. on [0,1]. Therefore,
from now on we assume that this reduction has been effected and that

under the hypothesis, G(x) is the uniform d.f. on [0,1].

Iet X;<Xj<...sX' ., bethe order statistics. The sample

spacings (Dl” . ’Dn) are defined by

D, =« X! o X!

1 1 1-1’ i=l’.."n

vhere we put X' =0, X! =1. In order that this definition of the
sample spacings be meaningful under any alternative, the d.f. G(x)
must have the carrier [0,1]. (The carrier of a d.f. is the smallest

closed set with probability one.)

Under the null hypothesis, E(Di) =1/n for all i. We will there-
fore call [nDi, i=1,...,n] as 'normalised' spacings. Further if

L%

as 'modified' or 'adjusted' spacings. For example, one way of adjusting

T N T R —

se+esh  be some positive mumbers, then we shall cell {nDi/h s lul,.ie,n}
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the spacings is to divide them by their expectations under some arbitrary
d.f. . The rationale behind dealing with the modified spacings is that
in some cases one may choose to adjust the spacings by their expectations
under some alternative distribution to increase the efficiency or other-
wise, to enlarge the class of statistics based on spacings. This may be
thought of as being analogous to the use of Normal scores and 6ther scores

in rank tests (see Section 6 for detailé). Tests based on spacings have

" been proposed for the goodness-of-fit problem by several authors. See

e.g., Greenwood (1946), Kimball (1950), Sherman (1950) and Darling (1953).
Distribution theory of such statistics and their asymptotic ”efﬁ.ciencies
have been studied by Sethuraman and Rao (1970) and Rao and Sethuraman
(1975). Since these two papers are closely related to the present work

and are referred often, we will refer to them as SR and RS respectively.

The present paper is devoted to the study of asymptotic distributions
and asymptotic relative efficiencies (ARE's) of tests based on modified
spacings. As pointed out in SR, for calculating Pitman efficiencies, it is
enough to obtain the limiting distribution under a sequence of alter-
natives which converge to the hypothesis. This problem turns out to be
somewhat simpler as can be seen from the cases treated by Cibisov (1961)
and Weiss (1965). Se also RS and SR. We, theref‘ore, choose the following

sequence of alternatives
G(x) = x + L(x)/na, 0<x<1

where 3 is a mmber 2 1/4 and L(x) is twice continuously different-
jable on [0,1]. These conditions imply our earlier requirement that
the carrier of G(x) be [0,1]. We shall say that this alternative is

at a distance of order n ° from the hypothesis.
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As in RS we obtain the limiting distributions of the empirical dis-
tribution functions of the adjusted or modified spac:lfxgs in the sense
of weak convergence of measures in D[0, =] the space of functions on
[0,»] with no discontinuities of the second kind. This is done through
some interesting results of independent interest concerning the empirical
distribution functions of perturbed random variables and randomly scaled
random variables which are given in. Sections 3 and 4. Appealing to the
invariance principle, we immediately hve the limiting distributicus of a
large class of statistics which are symmetric in the modified spacings.

As shown in RS and SR, tests which are symmetric in the normalised
spacings have limiting power greater than the test size only if 3 = 1/4
i.e., they cannot discriminate alternatives which are at a distance of
order n ° from the hypothesis, for any o> 1/4. It is also shown there
that among the many such standard tests due to Greenwood (1946), Kimball
(1950), Sherman (1950) and Darling (1953), the one by Greemwood based on
2 (nDi)z/n has the maximum ARE. We note another interesting feature
z;lthe symmetric spacings tests, namely their ARE's do not depend on the

particular choice of the alternative sequence i.e., L(x).

These features are not shared by tests symmetric in the modified
spacings, which are discussed in Section 6. Here the efficiencies depend
on the alternative sequence as may be seen from the expressions (6.5)
and (6.6). Also these tests based on modified spacings can in general,
distinguish alternatives at the more standard distance of n-% , though

there may be exceptions as shown by an example (see Section 6 for details).

The reader not interested in the detailed derivations may skip
Sections 2, 3 and 4 and go over to Sections 5 and 6 where the efficiency

comparisons have been made.
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2. Preliminaries

let X,X%,...,X , be (n~1) independently and identically dis-
tributed random variables with a continuous d.f. Gn(x), whose carrier
is [0,1], m «2,3,... . Xy5-+,X , may also depend on n, but we
shall suppress this in our notations throughout. Gn('x) is a sequence
of alternative distributions, which converges to the uniform distribution
on [0,1], the distribution specified by the hypothesis.

Assumption m:

We assume Gn(x) to be of the form
(2.1) G (x) = x + L(x)/n®

for x € [0,1] where 3 is a fixed constant 2 1/4. We impose the
following regularity condition on L(x). L(x) 4is twice continuously
differentiable on [0,1]. If £(x) and £ ‘(x) denote the first and
second derivatives respectively of L(x), then we note that there is a

constant Lo such that

(2.2) Lx)l = L, [e()] =5, b"&)] =1

‘for all x € [0,1].

The inverse function of Gn(x) is denoted by G;J'(p), 0<p=<1l

We define
(2.3) k,(p) = g,[6; (p)] = [aG] (p)/ap]™.
It may be verified that in our case

(2.) 6;1(p) = p-L(p)/n® + o(1/n°)

*
(2.5) k_(p) = 1+£(p)/n°- L) ‘(p)/n°2+ o(2/n ®*? )

*
where o(*) is uniform in p and 3 =max(0, %-23).




We will obtain several limit distributions urder the sequence of
alternatives Gn(x) satisfying assumption (A). It is clear, however,
that the limit distributions under the hypothesis are obtained by putting
L(x) = 0. We will make some further remarks about these alternatives in
Section 6. ILet the random variables (r.v.'s) X;5...,X, ; be arranged

in increasing order of magnitude thus

(2.6) 0= xis sxx'l_ls 1.

The sample spacings have been defined in Section 1 as

(2.7) D, =X/ - X

i i i’.-l’ 1 = 1,..-,11

' . & i
where we put Xo = 0, Xn = 1.

We first relate these sample spacings Di

uniformly distributed r.v.'s on [O,.l]' (to be called uniform sample

to the spacings based on

spacings). Let UpseeesU o De (n-1) independently and identically
distributed r.v.'s with a uniform distribution on [0,1]. These are

arranged in increasing order of magnitude thus
I oo e ’
OSU:I_s sUn-lsl’
The uniform sample spacings are defined by

(2.8) T

1=U;.-Ujl.-l’ i=1’-0-’n

where again we put Ué = 0, U!; = 1.

For two r.v.'s X and Y, we write X~Y tomean that X and Y
are distributionally equivalent, that is, the distributions of X and Y
are identical. We know that

-1
(Xi, i-o’aca,n)~(Gn (Ui')’ 1'0,-.-,!‘)
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and thus
(D, 1=1,...,0) ~ @) - 6y y), 1=1,..0,m)

= (Ti/kn(ﬁi)’ i=1,...,0)

’ 11 ’
where U:l-l < Ui < U:I.

i ST S N N R U i e TR S (e g

(2.9) = (Ty/e%, 1=1,...,0)
vhere

(2.10) of = 1+8y/nd+ vo/a?® + B,
with |

(2.11) = B, = 2(T,)

(2.12) vE = -Te @)

and

(2.13) ; s:p;/'i [B%,[ + 0 almost everywhere

in view of (2.5). Also, from the existence of the limiting distribution of

the Kolmogorov-Smirnov statistic,

(2:8) sup/m U] - 3/nl = 0,(1).

Thus from the continuity of L, £ and g/,

%
(2.15) s n® |8}, -8(i/n)| = op(1)
(2.16) sup Iy* -y(i/n)l = o (1)
i ni p

where




i (2.27) B(p) = 2(p)
(2.18) y(p) = -L(p) ‘(p), O0=p=1.

Now, let Wp,...,W be n independently and identically distributed

w

. exponential r.v.'s with density function e ', w = 0. Let w: = (Wl-l- +Wn)

and let W =W /n. Then it is well known that

(T

Ly i=1,...,n)~(wi/w:, i=1,...,0).

Thus (2.9) may be rewritten as

. ¥*
(2.19) (Di, i = l,noo,n) e (Wi/dn?wn, i= l’ooo,n)
where
(2.20) (0% 4 =1,...,0) ~ (a:i, TR e

In view of (2.20), we save on notation by writing an*;_ for ozn*; and
retain its structure defined in (2.10) and will later on utilise the prop-

erties (2.13), (2.15) and (2.16).

The empirical d.f., Hn(x) of the normalised spacings is defined as

follows
n

(2.21) Hn(x) = EI(nDi; x)/n, x 20
1

where

: 1l if zsx
(2.22) I(z; x) = "

o if zZ>X
: i : Using the equivalence (2.19), we note that

(H (x), x 2 0} ~{ ;_',:: I(Wila:iwn; x)/n, x =0}

(2.23) = (F(x¥ ), x=0)




n .
(2.24) : F:(x) . 2 I(W, /a3 x)/n.
; 1

Relation (2.23) says that the distributions of the stochastic processes {Hn(x) y X &1
n P ‘
and (g I(Wi/ot i W3 x)/n, x 20} in D[0,®] coincide and this distribution-
1 ]
al equivalence is siionger than the distributional equivalence of the finite
dimensional marginals. We refer to F:(x) as the empirical d.f. of

Wys...,W ~with random perturbations and a random scale factor ﬁn' |

If (hnl’ hn2""’hnn)’ n=1,2,... be a triangular array of positive

constants, define

(2.25) ' B un

i i/hni’ 1 = 1"oo,n'

»* *
We shall call (Dl,...,Dn) modified spacings modified by h .

empirical d.f. of these modified spacings is defined by I{;(x) where

""’hnn and the

n
(2.26) H:(x) & ZI(DI; x)/n.
1
From (2.19), it follows that
* W, -
(2.27) [Hn(x), X 20}~ {Fn(an), x 2 0}

*
where the a:i's used in the definition (2.24) of Fn(x) here are distribution-

ally equivalent as follows:

*
(2.28) (a¥, 1= 1,...,n}~(hni(1+an’;/na+ y:i/nza+Rni), i=1,...,n)

ks and R, satisfy the conditions laid down in (2.15), (2.16)

*
ni® Yni ni
and (2.13). As in the remark after (2.20), we replace the symbol '~' in i

where B

(2.28) by '=' in order to avoid introducing new notations.




3.  Asymptotic distribution of the empirical d.f. of random variables
subject to perturbations. .

Let Zl,ZZ,... be independently and identically distributed r.v.'s
with & common d.f. F(x) with F(0) = 0. We assume that F(x) is thrice
differentiable. ILet f£(x), f’(x) and f£“(x) denote the first, second
and thi.d derivatives respectively of F(x). We impose the following blanket

condition (B) on F(x).

Assumptioﬁ QB! s

xf(x), xzf'(x) and x3f”(x) are bounded on [0,=].

Let {anil’ i=1,...,n: n=1,2,...,} Dbe a triangular array of

constants. Then the random variables

Zni= 1/anil’ i=l’ooo’n
are said to be perturbed random variables, n = 1,2,... . ILet

n

Y (25 x)/n

(3-1) F ()

I(Zi/anil; x)/n.

Ll
=18 P

We refer to F nl(x) as the empirical d.f. of (z.l,...,zn) under a

perturbation by the non-random quantities {o hil? BT TR

The following structure is assumed of [anil’ i=1,...,n}). There

exist continuous functions B(p) and y(p) on [0,1] such that
(3.2) Caq =1+ B(i./n)/na + (.’L/n)/n23 + R
; nil ~ Y ni

where 3 is a constant = 1/4 and

(3.3) supJ—n|Rni|-0o as n - o.
i

T T A (R AT




If 3>1/2, then the second and third terms on the right hand side (RHS)
of (3.2) can be absorbed into R, and if 1M <23 < 4, then the third
teim of the RHS can be absorbed into R g * We note that A 1 uniform-
ly in i, so that without loss of generality we may assume :

(3-4) 1/2 s o, <2

for all n and i. ILet

Frp (x) = E(Fy (x))
o
= E( 2 I(Zi./dnil; x)/n)
1
n
(3.5). = XE(xanil)/n
1 .
and
(3.6) Ny (%) = V8 (Fy(x)-F, (x), x=o.

It is easy to see that F;l(x) tends to F(x) uniformly in x.

Remark 1: When condition (B) holds, we can replace Fy)(x) which

enters the definition of n nl(x) in (3.6) vy

F(x) if 3> 1/2
b 7y
F(x) + xf(x) foa(p)dp/na 1 1/ <as1fe

B ) e
= Fx) + x£(x) [18(p)ap/a™

+ [xr(x)J':v(p)dwxzf’(x)I:BZ(p)dp/ﬂJ if a-i—

after omitting terms which are of smaller order than n'l/ - uniformly in x.

The most general conditions under which r:l(x) can be replaced as above
must depend on 3. However since we are contemplating only the application
with F(x) = 1 - exp(-x) in Section 6, we will content ourselves by

imposing the blanket condition (B).

.....
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The following theorem which establishes the weak convergence of [“nl(x) , X20) is
taken from RS, where the weak convergence on the space D[0,«] is also

briefly explained

Theorem 3.1 (RS): Let condition (B) hold. The sequence [qnl(x), x 2 0}
considered as a stochastic process in D[0,»] converges weakly to a Gaussian

process [-ql(x), X 2 0) with mean zero and covariance function

(3.8) K, (x,¥) = K (y,x) = F(x)(1-F(y)) for x<y. | 1

To allow for perturbations by constants which are more general than given

in (3.2), we consider a triangular sequence [aniz’

with the following structure |

i=l’nco,n], n=1,2,..- 1

(3.9) Uy = o(i/n)[1+8(i/n)/n® + y(i/n)/nza.;.gni]

wvhere B(p) and Y(p) are continuous functions on [0,1] and R4

satisfies (3.3). We put the following condition (C) on &(p).

SRR it e e b

Assumption (C)

o(p). is continuous on [0,1] except at a finite number of points and,

for each x, the integrals of F(x(p)), o(p)f(xe(p)) and 6%(p)’(xs(p))

as functions of p on [0,1] exist and are finite.

We shall see later that this generalisation gives results which enable
us to obtain the limiting distributions of statistics based on modified
spacings. Define the empirical d4.f. F n2 (x) of the 2's perturbed by the

d [dnizl given in (3.9) , by a formula similar to (3.1). ILet F;2(x) and
fhz(x) be as defined in (3.5) and (3.6), with the perturbation constants

(o niZ] instead of {anil}’ The following theorem is proved exactly as

Theorem 3.1 and is stated without proof.




T

Theorem 3.2: Let assumptions (B) and (C) hold. The sequence of
stochastic processeﬁ [fha(X), x 2 0) in D[0,=] converges to the

Gaussian stochastic process {“2 (x), x =2 0} with mean zero and covariance

function Kz(x,Y) defined by
s
(3.10) K, (%,¥) = K (y,%) = J;F(M(p))ll-F(ye(p))]dp for x <y.

Remark 2: Under conditions (B) and (C), F.;z('x), which is defined

by (3.5) through the constants f{o n12] of (3.9) can be replaced by

4

1

! I P(xe(p))ap o a>1fe
= :

1 1 5 : !
[ F(xs(p))ap + [ x8(p)e(p)£(x8(p))ap/n® if p<ds3
F+ (X) =ﬁ 0 (0] 2

n2

(3.11)

1

1 1 ‘
.I;) F(x8(p))dp + J;xe(p)e(p)f(xe (p))ap/n

n1/2

3 00 TN S
+ [.[;)lw(p)e(p)f(xe (p))dp*.['ox 8“(p)e” (p)E (xB(P))dp/Z]/

ir 3=1/

: 1/2

£ up to terms of smaller order than n~ uniformly in x.

We now proceed to establish a limit theorem for the empirical d.f. of

*
3 randomly perturbed r.v.'s . ILet {dnil’ i=1...,n}) n=1,2,... bea

triangular scheme of random variables with the form

* * 2 *
(3.12) @ =1+ Bni/rxa + y:i/n 34 Ry
‘ where
|
| ' *
; (3.13) sr;pﬁ I8, | = ap(1)

and there are continuous functions B(p) and y(p) on [0,1] such that

A R S =

— il i sl el s s A i ik I
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sup na*lB:,_' 8(i/n)| = op(l)

i
(3.14)
+*
sxilp lvni-v(i/n)l = op(l)
where
3 1
o g~ ? if a< z
(3.15) 9 = _ : 5
0 if 2 E.
Let
- n
(3.16) Fa(x) = ) Hzg/ays x)/n.
1

This is the empirical d.f. of Z]_,...,Zn perturbed by the random quantities

{a:n', i=1,...,n}. let the non-random quantities [dnil] be defined as

(3.17) oy =1+ B(i/n)/n® + y(i/n)/n%® + R e

in terms of the new B(p) and y(p) and le(x) be defined by the

relation (3.5) with the new anil's‘ We have the following result from RS

on the process

(3.18) {ara ) = JT (Fy (x) - Fy(x), x2 o} -

Theorem 3-3 (RS): ILet condition (B) hold. The sequence of processes
[n*;zl (x), x=0) in D[0O,=] converges weakly to the Gaussian process

[nl(x), x =2 0} with mean zero and covariance function given by (3.8).

Now suppose that {“:12’ i=1...,0), n=12... 1is a triangular

scheme of r.v.'s with the form




* * * , 9 * 4, 29 ¥*
(3.19) Uiz = O [1+8e/0%% vpy/n ™4 B |

* *
where Rni’ Bni

and further there is a function 6(p) on [0,1] such that

and Y:i satisfy the assumptions (3.13) and (3.1%4)

(3.20) sup Ja le), - e(i/n)l = o, (1)

and 6(p) satisfies condition (C). Now define Fzz(x), Fzz(x) and n:z(x)
similar to the expressions in (3.16),(3.5) and (3.18), respectively with
[aﬁzl instead of [a:n]. The following theorem then follows from Theorem 3.2

in exactly the same way as Theorem 3.3 follows from Theorem 3.1.

Theorem 3.4t: Let assumptions (B) and (C) hold. The sequence of
stochastic processes (n:2 (x), x 20} converges weakly to the Gaussian
process [-qz(x), x 20} in D[0,«] where [nz(x), X 2 0] has mean zero
and covariance function Kz(x,y) given in (3.10).

A note of clarification regarding the notation may be in order. There
are four different sets of perturbation constants in ell, namely: (@ .} of
Theorem 3.1 satisfying conditions (3.2) and (3.3); -{aniZ} of Theorem 3.2 :
satisfying (3.3) and (3.9); {q;u] of Theorem 3.3 satisfying (3.12)-(3.14);
and finally {a;ia} of Theorem 3.k satisfying (3.13), (3.14), (3.19) and
(3.20). It may be noted that a subscript 2 is attached to denote pérturbation

constants with modifying term © (i/n) in them as opposed to the use of
subscript 1 where such a termm is absent. Similarly the random perturbation

s ; constants, as well as any quantities like empirical distribution functions

| ] based on those, are starred (as opposed to the analogous unstarred vérsion based

on non-random perturbations). Thus 'ﬂne(x) is the process based on the

non-random {ani2} which have the modifying term 0(i/n) in them while
'q;l(x) is based on the random {a;n] without the 6(i/n) term in them.

The four theorems of the next section also correspond to these four cases.

va"pz ,.
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4. Asymptotic distribution of the empirical d.f. when the random
*variables are subject to perturbations and a random scale factor.

We 'retain the notations of the earlier sections. ILet 1 nl(x) be
defined as in (3.6) through F,,(x) end F;:l(x) which are in turn defined

.as in (3.1) and (3.5) and the o:nu's have the structure (3.2).

* *
Iet 2 bear.w.endlet € = .li(zn-l) . We now meke the following

assumption (D) on the Stochastic process ({nq nl('x), x>0} and §.

E | ; Assumption (D):

For any finite collection (xl,;.. ,xk), the distribution of

{nnl(xl), “nl(xz),""’ nnl(xk), gn} converges weakly-to the distribution
~of (n 1(x1),...,n1(xk), €}, which is multivariate normal with zero means

and covariances given by
(4.1) : cov(nl(xi), “l(xj)) = Kl(xi’.x:j)’ 13, J*k

where l(l(x,y) is as defined in (3.8) and

(.2 cov(nl(xi), E) = al(xi), - B S,
and
(.3) . var(g) = 1.

We add the following to the assumption (B) made on F(x) in Section 3.

*
Assumption (B ):

There is an « > 0 such that x*(1-F(x)) + O and xf(x) + O as

X + o, Again from RS we have

|
@
]
|
]
|




i
i

b .S O Sab e Aekaptiie TBY. (2 B AL Bet
(.b) G ®) = VB (Fy (x2) - oy (x).
Then
(k.5) os;\;po lggq (%) = npy (%) -6 x£(x)] = 0, (1)-

Thus (¢ nl(x)’ X 2 0} converges weakly to the Gaussian process
{gy(x) = ny(x) + x£(x)E, x=0) in D[0,=] vhich has mean

zero and covariance function

(%.6) K3(x,y) = K3(y,x)

= K, (x,y) + we(x)e(y) + xt(x)a, (¥v) + y£(y)a, (x)-

We now extend this result to the more general non-random perturbation
+
factors [anizl defined in (3.8). let l"nz(x), Fo (x) eand “nz(") be
*
as defined and used in Theorem 3.2. If Zn be a r.v., we assume that
#
g, = Jn (Z -1) satisfies the following assumption (D) with the process

(nge(x), x2=0]J.

Assumption (Dj):
- For any finite collection (xl,...,xk), the distribution of

{qnz(xl),...,qnz(xk), €} converges weakly to that of (nz(xl),...,nz(xk), E)

which is a multivariate normal distribution with zero means and covariances

given by
(h‘7) cw(nz(xi)’ 'ﬂz(xj)) ol Kz(xi’ xd)’ 1 £ i’ J <k

vhere K,(x,y) is as defined in (3.10) end
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2 _,mv.% .

(4.8) cov(-nz(x ) 8) = ay(x), 121,00k

var(€) = 1.

Then we have the following theorem whose proof follows on the lines of

the proof of Theorem 4.1 and is omitted.

Theorem 4.2: Let conditions (B), (B'), (C) asd (D') hold. ILet

(4.9) C2(®) = VBIF,(x2)) - Frp(x)].

Then

(h.30) s lg (x) - np(x) - g, x( Ie(p)f(m(p))ap)l = o (1).
0sx<w

Thus {;nz(x), x 2 0} converges ‘weakly in D[0,=] to the Gaussian
process [cz(x) = -r|2(x) + gx(j o(p)f(xe(p))dp), x =2 0} which has mean

o
zero and covariance function

Kll» (x,y) = Kll- (v,x)

L i

1 1
= K (x,5) + xy( [; 8 (p)f(x0 (p))ap) ([ e(p)f(ve (p))dp)
o

1 1
(h.11)  + xa,(y)([ e(p)f(x8(p))ap) +yaz(x)(.[; 8(p)f(ye(p))dp)
o

with Kj(x,y) as in (3.10).

Now coming to the case of random perturbation factors, let [a:u] be
as in (3.12) and F (x), F:i(x) and n’;l(x) be as defined and used in
Theorem 3.3 . Let [anill’ the non-random constants generated from {oz:n]
be as in (3.17). ILet Z:, gn' be as used in Theorem 4.1 and satisfy the
condition (D) with the process [“:11(")’ X =2 0). Then we have the following

extension of Theorem 4.1 to the case of random perturbations from RS.
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Theorem 4.3 (RS): Let the conditions (B), (B') and (D) hold. Iet

Ga2) (o (%) = VRIE, (x2)) - F (x)]
then
*
(+.13) oss:szcnl(x) ") - Sxfx)| = o (1). i

Thus {cnl(x), X 2 0] converges weakly to the Gaussian process
{gl(x) = 'ql(x) + Exf(x), x 2 0) defined in Theorem 4.1.

Finally let ( a:izl be the more general randam perturbation factors
defined in (3.19) and satisfy the conditions stipulated there. Iet (a niZ)’
the non-random constants 'generated' by {a:iz} be as defined in (3.9).
Let F:z(x), F;ka) and n’;z(x) be as defined and used in Theorem 3.k.
let Z, & be as used in Theorem 4.2 and satisfy the condition (D) with
the process [n:z,(x), x 2 0). Then the following theorem can be deduced

from Theorem 4.2 in the usual way.

Theorem b.h: Iet the conditions (B), (B'), (C) and (D¥) hold. Iet
(h.24) Caz(®) = VAR, (x2) - FL, ()],

Then

1 :
(h:35)  swp lgpp() - npp(e) - 6 x(f] e(p)e(e (p))ap) | = o (1).

Thus the process [gna(x), x 2 0} converges weakly in D[0,®] to the
Gaussian process {Cz(x), X 2 0) defined in Theorem 4.2 with mean zero

and covariance function given by (4.11).
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5. Asymptotic distributions of the empirical d.f.'s of normalised and
modified spacings and tests based on them.

In this section, we relate the results of the last two sections to

the spacings statistics. First we give the asymptotic distributions of
the empirical d.f.'s of the normalised spacings Hn(x) and of the modified
spacings H.(x), defined in (2.21) and (2.26) respectively using the dis-
tributional equivalences (2.23) and (2.27). We then establish the asympto-
tie ﬁormality of some classes of test statistics based on these spacings.
We shall first consider the 'empirical .d.f. of the normalised spacings
H (x), which from (2.23) is distributionally equivalent to F(x¥_).

The r.v.'s Wl,wz;... have the exponential d.f.

(5.1) - F(x) =1- eX, x=2o0

which satisfies all the regularity conditions of Theorem 4.l and the as-
sumptions (B) and (B*). Further the [a:u] used in the definition of
*

Fnl(x) satisfy the conditions (3.12), (3.13) and (3.14) with B(p) and
Y(p) given by (2.17) and (2.18). Hence we have

1 1
(5.2) J 8(p)ap = [ #(p)ap =0
o (o]

1 1 I T
[ v(p)ap = - [ L(p)e'(p)ap = [ £“(p)ap = [ 8°(p)ap.
(o] [o] (o] (o]

Let

R —r G

(5.3) ‘:1"‘) = /B [H(x) - Fyy(x)]

~ V& [y (xW,) - Fp, (x)]
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(1- °-x5 for 2> 1/

(5.4) P (x) = <

1l
: (-2 + (f Lz(p)dp)e'x(x-xz/Z)/ﬁ for 3=1/k
o

1/2

ignoring terms which are of smaller order than n~ uniformly in x.
Further since the random scale factor here is ﬁn’ assumption (D) is sat-
isfied and al(x), defined in (4.2) is easily seen to be (-xe™X). In view
of these remarks we have the following theorem as a consequence of Theorem

4.3 as in RS.

'Theorem 5.1 (RS): The sequence of stochastic processes [g:]_(x), x 2 0]}
cohverges weakly to a Gaussian process [gl(x), x > 0} . with mean zero and

covariance function

(5.5) K(y) = €V (1- e -xye™), x<y.

The invaviance principle may bé invoked to obtain the limit distributions of :

various functionals of 4 nJ_(x) and their ARE's computed, as was done in SR.

Consider now the modified spacings

* “
(5.6) D; = nD;/h . ]
where hni satisfy
(5.7) & Jaln - n(i/n)l = o(2)

where h(p) is a function on [0,1] having at most a finite number of

* * *
discontinuities. Then the empirical 4.f. [Hn(x), x 20} of [D]."”’Dn]




defined in (2.26) is distributionally equivalent to [Fzz(xﬁn), x = 0]}
¥* -
where F nz,(x) is the empirical d.f. of the exponentially distributed r.v.'s
*
Wyse..,W perturbed by the random factors [aniZ’ i=1,...,n) which have
the structure defined in (3.19), i.e.,

* * * , 9 * , 23 *
¥yn = °n1(1+ Bni/n + yni/n + Rni)

:1, y:i and R:i satisfy (3.20), (3.14), and (3.13)

respectively with

*
where eni, 8

6(p) = h(p)
(5.8) B(p) = v(p)
v(p) = -Lp) £ (p), O0=<ps1l.
Let '
(5.9) (o (x) = VRIE () - Foy(x)]
where
1
F;z(x) = fo(l- e 22(p) ap if 3> 1/2
L. _ -xa(p) L xn(p) oy 2
=[ (- P))gp + ([' xe P L(P)h(P)dP)/n
o o]
(5.10) if 1M <3s1f2

1 1
= [ (e ®)ap + ([ xeB®) yp)n(p)ap)/att
(o] (o]

1
+ | [—xL(p)z'(p)h(p)e°xh(p) - xahz(p)tz(p)e'xh(p)/?-] dp/n%
(o]

if a=1/k’

1/z

to terms of order n- As an immediate consequence of Theorem 4.k,

1
since ‘2(") defined in (4.8) is (-x J h(p)e"m(p)dp), we have the following
& :




»*
Theorem 5.4: The sequence of stochastic processes (( nz(x), x 20}
in D[O,=] converges weakly to the Gaussian process fgz(x), x 2 0) with

mean zero and covariance function

1l
(5.12) K, (x:3) = K, (v,x) = [ e 8R) g (g
(o]

i p -xh(p) : -yh(p)
([ e)e™ ™ Pap) ([ nip)e™™ Pap)

for x =< y.

The invariance principle immediately gives

Theorem 5.5: let m(x) be an absolutely contimuous function on [0, ]

with m(0) <o. Iet m’(x) be bounded on every finite interval and let the
function on D[0, =]

y() > [ o Gytax
o

be almost everywhere continuous with respect to the Gaussian process

[cz(x), x 2 0} defined in Theorem 5.4. Let
(5.12) m(n D:)/n.

Then the distribution of

(5.13) VRIT - [0 (x)(1- Fy(x)) ax +m(0)]

o

where F;Z(x) is defined in (5.10), converges weakly to the normal dis-

tribution with mean zero and variance

(5.1) 71 8, (xy)m (a0 ()ax ay
o O

where Kh(x’y) is as defined in (5.11).
This theorem covers a very wide range of statistics based symmetrically
on modified spacings.
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6. Asymptotic relative efficiences of tests based on modified spacings.

The Pitman asymptotic relative efficiency (ARE) of a test relative to
another test is defined as the limit of the inverse ratio of sample sizes
required to obtain the same limiting power at a sequence of alternatives
converging to the null hypothesis. This limiting power should be a value
in between the limiting size, o and the maximum power 1, in order that
it can give an insight into the power behaviour of the test. If the limiting
power of a test at a sequence of alternatives is o, then its ARE with
respect to any other test whose limiting power (with same size) is greater
than o, is zero. On the other hand, if the limiting power of a test at
a sequence of alternatives converges to a number in the interval (a, 1),
then a measure of. the rate of this convergence, called 'efficacy' can be
computed. Under certain standard regularity assumptions (see, e.g., Fraser
(1957)) which include a condition about the nature of alternatives, asymptotic
normal distribution of the test statistic under these alternatives, etec.,

this 'efficacy' is given by

6.1) efficacy = pb'a / oh R

Here y and 02 are the mean and variance of the limiting normal di.s-
tribution under the sequence of alternatives when the test-statistic has
been normalised to have a limiting normal distribution with mean zero and
finite variance under the hypothesis. In such a situation, the ARE of one
test with respect to another is simply the ratio of their efficacies.
Using Theorem 5.5, we can now compute the ARE's of tests which are '
symmetric in modified spacings. We defined {D: = nDi/hni’ i= 1,...,n}

as the modified spacings where the factors {h ni] satisfy the condition

A2e ki bz




(6.2) stizpﬁ I'n, - b(i/n)l = o(2).

If m be any function on [0, =] satisfying the conditions of Theorem 5.5

we define a symmetric statistic based on the modified spacings

n
(6.3) T= ) wdy)/n
i=1

The mean under the hypothesis of this T: is, say

: o 1
(6.1;_) ,,:n 2 Io fo n’ (x)e B (P) ax ap

and under the alternatives (2.1) say

3 *
[, Bip = Pon if 2>1/2
" “:n + Alm, I, h)/n®, say if 1/4 <3 = 1/2
' (6.5) =p. + A, I, n)/n* + B(m, 1, n)/n 22, say if =1/
where 3
A(m,L,h) ==~ [ [ m'(x)xz(p)h(p)e"m(l’)dx dp
(o 2o ]
= oty ¥ (D)
B(m,L,h) = [ [ m'(x)e [xL(p) £/ (p)n(p)
(o N o }
(6.6) + («£/2) £ (p)n® (p)ax dp.

: *
If A(m, L, h) ;4 0, then the sequence of tests based on Tn can distinguish
alternatives of the form (2.1) at a distance of order n'l/ 2 from the

hypothesis. This shows that such tests have a better performance than tests

[ considered earlier which are symmetric in the normalised spacings. However
there is no surety that A(m, L,h) # 0 for all L. Consider the following

example. Let

R AP IR A P T = i o P

. i e b SR e e i i
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h, = n/(n-i+1)
n(p) =1/(0-p), 0sp<1

% (n-1+1)D,

i
(6'7) m(x) = X.
Then
n
*
T, = Zm(D:)/n
1
n
= ) la-1+1)0;)/n
i=1
n
(6.8) = }:xi/n +1/n.
i=l
A simple computation shows
1
(6.9) A(m, L, h) = [ ps(p)dp
o
which is na

times the excess of the mean under the alternative over that
¥*
under the hypothesis and is zero for alternatives under which Tn has a

n
mean 1/2. But if this excess is non-zero, the test based on PN m(nD:)/n
3

has a better performance than symmetric normmalised spacings statistics con-
side:;-ed in Theorem 5.3.1 However if A(m, L,.h) = O, this test statistic T:
discriminates such alternatives, if at all, only when they are at a distance of
n'%, which puts this on par with the symmetric spacings tests.

But it should be remarked that one can always construct tests based
symmetrically on modified spacings which have the ability to detect alter-
natives at a distance of n~ % . This is because in testing the hypothesis

of uniformity against the fixed sequence of alternatives Gy(x) = x+L(x)/n%,'

25
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the test statistic

(6.10)

T - 21&(:1/:1+J.)D:l
1=1

i ; 1
with h(p) = 1/£(p) and m(x) = x, has A(m,L,h) = [ zz(p)dp # 0. Some
0
recent investigations by Holst and Rao (1978) indicate that tests of the form

(6.10) provide the locally most powerful spacings tests for uniformity against

the fixed sequence of alternatives Gn(x).
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